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Simple,Effective Computation of Principal Eigenvectors and thkeir Eigenvalues
and Application to High-Resolution Estimation of Frequencies

D.W. Tufts and C.D. Melissinos

Department of Electrical Engineering
University of Rhode Island
Kingston, RI 02881

Abstract

Ve present the results of an investigation of the Promy-Lanczos (P-L)
method [14,38] and the power method [39] for simple computation of
approximations to a few eigenvectors and eigenvalues of a Hermitian matrix,
We are motivated by realization of high-resolution signal processing in an
integrated circuit. The computational speeds of the above methods are
analyzed. They are completely dependent on the speed of a matrix-vector
product operation. If only a few eigenvalues or eigenvectors are needed, the
suggested methods can substitute for the slower methods of the LINPACK or
EISPACK subroutine libraries. The accuracies of»the suggested methods are
evaluated using matrices formed from simulated data comsisting of two
sinusoids plus gaussian noise, Comparisons are made with the corresponding
eigenvalues and eigenvectors obtained using LINPACK. Also the accuracies of

frequency estimates obtained from the eigenvectors are compared.

This work was supported in part by the Electromnics Program of the

Office of Naval Research.




I. Introduction

We are motivated by the use of eigemvector decompositions of data
matrices or estimated covariance matrices for detection of signals in noise
and for estimation of signal parameters. This has evolved from early work of
Liggett [1] and Owsley [2], to adaptive—array-detection improvements of
Tufts and Kirsteins [3,33] and high-resolution parameter estimators of
Cantoni and Godara [4), Bienvenu and Kopp [5], Owsley [6], Schmidt [21] and
Tufts and Kumaresan [7,32].

Principal component analysis, wusing principal <eigenvalues and
eigenvectors of a matrix, was initiated by Karl Pearson (1901) ([8], and
Frisch (1929) [9] in the problem of fitting a line, & plane or in general a
subspace to a scatter of points in a higher dimensional space. Eckart and
Young [34] presented the nse of singular value decomposition for finding
low-rank approximations to rectangnlar matrices. C.R. Rao examined the
applications of principal component analysis [10). Eigenvector analysis is
also used in image processing to provide efficient representations of
pictures [11]., Recently, principal component analysis has been coupled with
the Wigner mized time-frequency signal representation to perform a variety
of signal processing operations [28,30,31],

Linear Prediction techniques for estimation of signal parameters,which
are modern variants of Prony's method, «can be improved using eigenvector
decomposition [7]. Prony’s method is a simple procedure for determining the
values of parameters of a linear combination of exponential functions. Now
*Prony's method” is usually taken to mean the least squares extension of the
method as presented by Hildebrand [13]. The errors in signal parameters

which are estimated by Prony's method can be very large [14]. If the data

is composed of undamped sinusoids, the forward and backward prediction
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equations and a prediction order larger than the number of signal components
can be used simultaneously as advocated by Nutall [22], Ulrych and Clayton
[23], and Lang and McClellan [24]. Tufts and Kumaresan have shown .how ome
can improve such methods of parameter estimation by going through a
preprocessing step before application of Prony’s metbod [7,15,16,17].
The measured data matrix or the matrix of estimated covariances is replaced
by a matrix of rank M, which is the best least squares approximation to the
given matrix, If there is no prior information about the value of M, it is
estimated from the data using singular value decompositon (SVD).

The eigenvalue problem [37] is one area where extensive research has
been done and well established algorithms are available in highly optimized
mathematical libraries such as LINPACK and EISPACK [40] .The computational
complexity of these algorithms is of order O(N3) where N is the size of the
matrix, They solve for the complete set of eigenvalues and eigenvectors
of the matrix even if the problem requires only a small subset of them to be
computed. For the above applications,only a few principal eigenvectors and
eigenvalues are needed. Hence,we would like to use a method which uses this
specialization to reduce the computations.

Tufts and Kumaresan [29,32,33] have suggested procedures for
improving Prony’'s method without computation of c¢igenvectors. These appear
to perform about the same as the more complicated approaches which use
eigenvalue and eigenvector decomposition. The approach in [29] is based on
the results of Hocking and Leslie for efficient selection of a best subset

[25]. The approach of [32] and [33] is based on the simple computations

which result from using the longest possible prediction interval,
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Here we investigate two different approaches to achieving SVD-1like
improvement to Prony’s method without the computaticnal cost of actually
computing the SVD or computing all eigenvectors and eigenvalues. The idea
is to calculate the few,necessary eigenvalues and eigenvectors using the
power method [39] and a method of Lanczos [14]. Our derivation of Lanczos'’
method stresses the connection with Prony’s method . The methods are
analyzed and their amounts of computation are calculated. Simulations are
performed and results are compared to the singular value d;composition

method in LINPACK.

II. The Prony-Lanczos Method

Let us assume that we start with a given square,Hermitian matrix A for
which we want to compute the principal eigenvectors and eigenvalues. For
examples, this could be either the true underlying, population covariance
matrix or the estimated covariance matrix [36] from spatial or temporal
data. Let us also define the eigenvectors and eigenvalues associated with

the matrix A (dimension A=n).

Ag; = A\u; , i=1,2,..0,n | 1)

* . .

where u; ‘w; =0, i #j
Ei"EJ =1, 1i=7j , that is w; are orthonormal vectors. (2)

The asterisk is used to denote a complex conjugate transpose.
The characteristic polynomial associated with the matrix A is given by
det(A - AI) = 0 (3)
Expanding the determinant we have the polynomial equation
AB4p ARl 4 sp =0 (4)

and the roots of this. polynomial will give us the eigenvalues A; of the

matrix. We briefly summarize the procedure for obtaining the eigenvalues A;
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based on the Lanczos "power sums” as presented in [14], We shall show that
the eigenvalues can then be obtained from the power sums by Prony’s metlod
[13].

Let us select a starting vector b, We assume that the starting vector
b, has a non-zero projection om the eigenvectors of the matrix A
corresponding to the eigenvalues that we want to compute.

We then analyze the vector Eo in the reference system of the vectors
{u;}, which are the set of orthonormal eigenvectors of the matrix A:
by=T1uy +Taum+t. .. .t 1B (5)

n -n

(6)

*
i T o L7

Hence, using equation (1),successive vectors formed by premultiplications

of b, by powers of the matrix A can be represented as follows :

by = Aby =Ty Ayt Ty A Byttt Ay By
_ a2 _ - 2 2 2
92 = A 90 = AE]_ = ‘Cl 1.1 21 + tz kz 112 + . . . Tn kn En (7)
: N _ _ x k k
by+1 = A" By = Aby =Ty AT -y Ty Ay By v L h Ty A ny
Let us form the set of basic scalars:
Cisp = by By = by by (8)

Then we shall have:

e L e Y e L LS T L PO )
which were called by Lanczos the "weighted power sums® [14] ,
The problem of obtaining A;’'s from the c;'s is the “"problem of weighted
moments®” [14]., That is the problem of Prony [12] and the old and modern
versions of Prony’s method can be used to estimate the A's.

The prediction—error—-filter equations of Prony’'s method can be written

as follows:




'.“k .

-.lw.l

(10a)
°n80 T Ca+181 t v+ o T Cop g8yt €20 T 0
or in matrix form,
C+-g3=20 (10b)
A non-zero soluntion is possible if the determinant of C is zero.
From the theory of Prony’s method [13]
g ) = AR+ g AT L g v g =0 (11)

hence the polynomial coefficient vector g is also orthogonal to the vector
{1 xi2 o e e kik}T where A;’'s are the eigenvalues of the matrix A.
Lanczos noticed that Prony’s method can be simplified if we substitute
the sequence {1 ki kiz « . e kin] for a row of the matrix C to form a matrix
C'. If we replace the matrix C by C' in (10b), the non-zero vector g is

still a solution, because of (11), Hence the determinant of C' must be zero.

1 A v ... R
1 1 1
det C' =
Co 01 02 « s e Cn
= p'(xi) =0 (12)
€am1 Cp t et oe s+ Cgpg

Hence, the li's can be obtained directly by finding the zeros of the

polynomial p’(2z). That is, Lanczos showed that it is not necessary to first
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solve equations (10) for the prediction—error—filter coefficients.

Thus,in the absence of noise, we know that entering the weighted power
sums ¢y of (8) in equation (12) and finding the roots of the resulting
polynomial will provide us with accurate estimates of the true eigenvalues

A of the covariance matrix A. Note also, that equation (12) can be

a an

reduced to order equation involving only ¢ €1, ¢, c¢3 and still

o’
provide us with accurate solutions for our problem of estimating one or two
sinusoids.

Now, if our data is composed of one or two complex sinusoids, then the
(LxL) covariance matrix elements will be also one sinusoid or a sum of two
sinusoids, hence the rank of the matrix will be one or two,respectively.
The eigen—decomposition of the matrix will show that it has only ome or two
non—-zero eigenvalues and hence it can be charucterized by a 1linear
combination of omne or two eigenvectors, corresponding to the principal non-
zero eigenvalues. In Appendix A it is shown that these eigenvectors can be
expressed as a linear combination of <complex sinusoids which have
frequencies equal to these of the sinusoids composing the data.

Now, suppose that we have accurately determined a few eigenvalues,say
two,A;y and A,,from the (nxn) matrix A. We wish to determine the
corresponding eigenvectors. Two concepts are used : (a) premultiplication of
a vector by the matrix ( A-A;I ) removes the ith eigenvector component of
that vector and (b) if a vector , to a good approximation,consists only of M
eigenvector components ,then removing (M-1) of these components leaves

one,isolated eigenvector compomnent,

Let us consider the special case of a rank two matrix

] ]
A= Mugmy * MUy (13)
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i" From equations (5) and (13) we have:
A
I -
B Aho = 111121 + 7212!2 (14)
l»
=
)
. Then,our preliminary,unnormalized estimates of the two principal
,'" L-‘\.
R o eigenvectors are :
Us
e El' = (A’XzI)APO = (A"le)(tlxlgl*‘tzkzgz) =
‘:}' = TqA20q + Toho2us = Tihqhaly — Toholu, =
- 141 21 242 =2 1414221 242 22
0
R -
' And similarly for the second eigenvector estimate we have
]
~,
e _1}2' = lez(lz—ll)gz . (16)
f .
ﬂ!! Normalizing the eigenvectors u.' (i=1,2) we can write (15) and (16) as
D %
o ' = ed®1 gy ; 8y= angle of T{hg(Rg-}Aj) (17)
3 By’ = €2 8y ; 6= angle of TyAg(Ry—A4) (18)
. jcj;
s In general ,given the required eigenvalues from the earlier Prony
) *,._‘,

calculation,we estimate an unnormalized kth eigenvector from the formula

-
= Wi ol

.
[ R

u ' = T (A-MI) Ab, (19)

LA

ik

R
s




e y LAt Sad BaC 208 ook Sob Sl Seiavs A AR A iSioahiaecaia e s B s adll ars a-d gl B S A e 2 0 A I A S el ol o i

)

Pl

Py

Y
3

i)

; where the number of factors in the product depends c¢n the number of
A

); significant eigenvector components in Abo.

E? Finally, a few comments should be made on the selection of the starting
&8 vector b,. Our sole assumption until now has been that b, has a nom—zero
?% projection on some eigenvector of A that we want to compute. A good 90
Ei vector would have to be biased in favor of the principal eigemnvectors. Ve
- have found that the Fourier vector provides a very good selection for Eo‘
é‘ This vector will have its fundamental frequency computed from the maximum

f}{ peak of the DFT data spectrum. Very frequently in signal processing
éf applications the data is preprocessed through a DFT step for a coarse
:} analysis. This is & valuable bonus for our method to use the available
;T information for further processing.

III. The Power Method

‘; Suppose A is a Hermitian (nxn) matrix, The SVD theorem [37] states
. that A can be written as:

b A=v-8- 0T (20)

.}\ where U is a unitary matrix and S is & matrix consisting of real only
E diagonal elements [37].

The power method computes the dominating singular vectors one at a time

- and is based on solving the equation:

su = An (21)
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for the singular vector u and the singular value s. The power method uses

an iterative scheme to solve (21). We instead suggest a two-step solution

using an appropriate starting vector Qo:

By =Ab, / ”Abo” (22)
The singular value is chosen to be:

51 = 118 1| (23)

In order to obtain the next singular vector, the estimated singular plane

(glglr) is removed from A using the following deflation procedure [37]:
A" = A-s; 9 0y" (24)

and the procedure is repeated with matrix A to yield $2,Up.

The selection of b, is very important and the Fourier vector provides a
very good estimate. This preprocessing step can be implemented in VLSI very
efficiently using summation~by—parts [28] or the Fast Hartley Transform
[42,43] methods. A necessary thing required to implement the power method
is a8 circuit capable of computing matrix vector products of the form Au,
But the rounding errors associated with it are always worrisome limiting the
usefulness of the power method, For this reason we propose to use the
permuted difference coefficients (PDC) algorithm [26,27] coupled with the
known Fourier vector to perform the above operation with high accuracy and
no round-off errors. A VLSI implementation for the PDC algorithm can be

easily realized using a random access memory (RAM) toghether with a read-

‘ 7 TN R P [ AT NP S T P S A ~n "
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5» only-memory (ROM) where the original Fourier coefficients and the subsequent

reordered coefficients addresses are stored.

IV. Operation count ‘

In this section we calculate the total operations needed for the
ﬁ‘ singular value decomposition (LINPACK), the Prony-Lanczos method and the

Power method.

-

(1). The matrix eigenvalue problem has been solved in both LINPACK and

P

EISPACK mathematical libraries, The LINPACK SVD routine is presented here. d

-

-
-~
-

F

The solution can be divided in three steps: reduction to bidiagonal

>
r'
-

-

-
X E

form,initialization of the right and left unitary matrices U and V and the

'

iterative reduction to diagonal form.

The reduction to bidiagonal form has the following floating point

s

multiplication count (for a square NxN matrix): ¢

2 !
)
K

21 N3 - N3/3] ,
X 9
®
1y {
B Approximately the same number of additions are required. Q
“ In the second step the amount of work imvolved when only the right~hand .
thy 4!
¢
:k side matrix V is computed, is:
]

: 2N3/3

., floating point multiplies and approximately the same number of additionms.

o In the last step rotations are used to reduce the bidiagonal matrix to

o

. diagonal form. Thus the amount of work depends on the total number of ;.
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' rotations needed. If this number is r, then we have the following

multiplication counts:

4Nr

b .

~ The number r is quite difficult to estimate. There exists amn upper bound for
O z,

E’F

3

) r £ sN2/2
@

where s is the maximum number of iterations required to =reduce a
»
b superdiagonal element as to be considered zero by the convergenmce criterion.

" Hence the total operation count for the LINPACK SVD solutiom is:

? aN3+4Nr < 2N3(s+1) flops

! where by the term "flop” we denote a floating point multiply—add operation.
&, (2). The Prony-Lanczos method is entirely dependent on the speed of a
f\'ﬁ

e matrix—-vector product operation . For a rank two square matrix of size N we
x shall have:

o

The matrix-vector multiplications to determine the vectors b, imvolve

120

X N floating point multiplications and (N-1) floating point additions per row
e for a total of :

N
‘ E N2 flops
D ['h;
,‘::: ( 2N2 flops for the two vectors by,by ). The scalar weights c; ,i=0,1,2,3

OO 1) 0 ",
.*‘gq’l?r.”’-?l”,s“,p'_ﬁ :’_l ,f'i!‘ﬁ'g!\!g! NNy
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require vector—-vector inner products for a count of N multiplications and

(N-1) additions per weight . Therefore the total is:
4N flops

The computation of the eigenvalues from the (second order) determinant
condition involves 12 flops and one square root calculation. Finally,the
eigenvector computation requires N flops for each veétor for a total of 2N
flops.

Hence the total operation count for the Prony-Lanczos procedure

requires:
(2N2+6N+12) flops + 1 square root

The above computations do not include the work required to select the
starting vector yo using a DFT analysis, In this case,assuming a data

sequence zero padded to M points,we shall have:
MlogyM flops

plus (M-1) additions for the determination of the maximum spectral peak.
(3). The power method computes the dominating eigenvalues and

eigenvectors one pair at a time . The second pair will be computed following

a deflation of A. In general, the number of iteration steps depend on the

convergence criterion severity . We instead claim that two-steps are

generally enough to provide sufficient accuracy. The Fourier vector is again

selected as the starting vector b,.
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The first eigenvalue/eigenvector pair requires 2N2+2N flops. The
deflation step requires N2 flops and N2 floating point additions.
Bence (for a rank two matrix) the power method requires a total of
5N2+4N  flops

plus N2 floating point addtions.

V. Simulation results

Let us assume that we have a data sequence which is composed of
uniformly spaced samples of two closely spaced complex sinusoids in white
noise, We shall follow the methods described earlier in section II & III to
calculate the principal eigenvalues and eigenvectors.

The data sequence is given by the equation
x(n) = exp(j2nfyn + ¢;) + exp(j2nfyn + g,) + win) (25)

with £f; = 0.52Hz, f, = 0.5Hz and for n=1,2,...,25

Here, 25 data samples are used and the phase difference is Ag = n/2
computed at the middle of the data set, effectively reducing the signal-to-
noise ratio in that region, thereby representing the worst case that can be
encoun£ered. The frequency separation is less tham the reciprocal of the
observation time. The data is zero padded to m=128 points and then the
maximum peak of the DFT is computed to yield the frequency of the Fourier
vector, This vector will be used as a starting eigenvector for the P-L and
Power methods later,

We construct the forward plus backward augmented covariance matrix A of
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&ﬁt' size (21x21) ., Its effective rank is two. The SVD routine ,the P-L method
;%:, and the Power method are employed to solve for the eigenvalues and
;?ii eigenvectors (eigenpairs) of the matrix., The P-L method and the Power
ii% method compute only the two principal eigenpairs. The mean values and
vl standard deviations of the eigenvalue estimates are given in Table I for an
g&’ ensemble of 500 experiments. The performance of the P-L and Power methods is
g?ﬁ‘ almost identical to the SVD (LINPACK) method for the first eigenvalue
. estimates. At high SNR the second eigenvalue mean and standard deviation
i%%; estimate obtained from the P-L method is biased with respect to the
Eﬁ% noiseless SVD results. However ,at low SNR the eigenvalue statistics are
} closer to the noiseless SVD results than the other two methods.,

:gﬁ Table II presents the statistics of the distances of the P-L and Power
=

) methods eigenvectors from those of the SVD method. The distance is the
inverse cosine of the angle between the subspaces spanned by the estimated
eigenvectors [41]., The results show that for the first eigenvector the P-L
estimate of the mean is less biased (about ome order of magnitude) than the

Power method, whereas for the second eigenvector estimates they perform the

N

%;: same, This shows that these vectors span virtually the same subspace as the

%&i vectors computed from the SVD method. The eigenvector estimates were also
o compared to the signal eigenvectors and the distances were computed as
%ﬁ above. The results show that at high SNR the eigenvector spanned subspaces

E;E have a greater distance from the signal subspace than the SVD subspace. At
e low SNR the distance is reduced and the second eigenvector statistics are

?%E: closer to the signal eigenvector than the SVD eigenvector.

‘%ﬁi Table IIX shows the CPU time required to compute the

;;; eigenvalues/eigenvectors pairs for these methods. The P-L method is faster
Zgﬁ: than the SVD by the order of the size of the covariance matrix, which here
hd
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is 21, This roughly agrees with the theoretical operation count we presented

G

in section IV, It is almost twice as fast as the Power method. Inclusion of

iy
A' .‘ﬁ

ot P

the FFT computation in these two methods will offset some of their speed

125 e g s

advantage over the SVD ., Nevertheless ,the P-L method is again about ome

order of magnitude faster than the SVD method and the Power method a little

A

more than half that (6 times faster).

.)

ML N
Esti

The frequencies fi are then obtained from the eigenvectors of the

,:Eg estimated covariance matrix by the T-K method [7]. For both estimates of
i b
()
% the mean and standard deviation ,as presented in Table IV,all three methods
W)
!
5£} perform similarly down to 15 db. At O0db the P-L method yields slightly
i better statistics than the other two methods.
f‘k:
-2
I
|
n'ii
} VI. Conclusion
i -
4 Two methods,the Prony-Lanczos method and the Power method are proposed
" for simple computation of approximations to a few eigenvectors and
ﬁ'!! eigenvalues of a Hermitian matrix., The computational speeds of these methods
A
1\:¢ were analyzed. The accuracies of the proposed methods were evaluated using
A
= covariance matrices from data consisting of two sinusoids in a gaussian
f‘gs noise environment. Comparisons were made with the corresponding eigenvectors
b~;'.
) and eigenvalues obtained using the LINPACK mathematical 1library. The
(X . .

by suggested methods can substitute for the slower method of LINPACK if a few
3 oo eigenvalues or eigenvectors are needed,
; .:.:
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Appendix A:

In this appendix we derive the eigenvalues and eigenvectors of the
covariance matrix R for the case of one and two sinusoids.

One Complex Sinusoid Case:

The data sequence is modelled by:

The covariance values of y(n) are:

N
(1.9) =g 0 ¥ (-i)y(a-j) 1,§=1,2,...,L (A.1)
tyy i,j L y (n—-i)y(n—j i,j=1,2,..., .
n=L+1

Vriting the covariance matrix R explicitly in terms of the signal, we have:

[ l‘l |2 |31|2e —jwl |a1 |2e—jw1(L-1).
jo -jo, (L-2)
2 1 2 2 1
"1' e 'a1| "1' ¢ (A.2)
jo,(L-1)
2 1 2
RENK lay | |

We can diagonalize R by an orthogonal matrix U resulting in the following

S0 R AN
,'..ig.l. s
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i IR

2
Ay Ay
2"

r,ll'J",A
L

%% T

equation:

*
U RU = (A.3)

The eigenvalues of R which occur along the diagonal elementsnof the above

equation,satisfy the following equation:

(A.4)

L Ia

L
2 ki = tr(R) 1'

But the covariance matrix R is of rank=1, since it has only one linearly

independent row (or columm). The rest are obtained by multiplying by a

i :

constant number (e

L "1'2 is:

Then the eigenvector corresponding to the eigenvalue A




- -l “Bap b , W T RO T TR L T T W

R
§h§‘ since it annihilates every row of the matrix (R—kll). The comstant cq can

be determined from the fact that the matrix U is orthonormal, bence:
81* " gy =1

:}3 which yields:

)
0
e :.‘ -"‘)’"l"
[ ¢]
-
[
&~

~“l‘|
A8t ty Ol

7 X
2o

i "‘"J’.’

Hence finally:

o
-

b
-

RN e %
Ty o
5 g

y ¢

A
Pd

2jw j(L 1w
e 1 e 1 ) (A.5)

Ie

GJ‘”

21 =?Li‘ 1
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and this is a Fourier vector with fundamental frequency 0;.

Two Complex Sinusoids Case:

The data sequences is modelled by:

\‘a
‘(_ o




The covariance estimates are given by the expression:

N
1 L ]
ryy (k,m) = } y (a-K)y(n-m) =
n=L+1

281 Yy k,m= 1,2,...,L

jml(n-m)-jwz(n—k)

jwz(n—m)—jwl(n—k)

Rewriting the matrix R, we have:

R = Ml M2

(Lx2) (2zL)




2 2 2, .
s My = [ag|® eg + x g5 lag]® &g + x° 4]
i _ . T
e My = [e [T

y . . e
': e = [t od0  eFHey  IleT
‘ D ey =1 ejw2 erwz od (L-l)mle
At and
o -
"R
o 1.1,
L)
]
Lot

. : _ N _

,l{ ) a,a, J(w2 ml) } j(w2 wl)n

< = e e
e nl+l
Lo
ifj If uy is an eigenvector of R corresponding to eigenvalue Aj, then:
.‘-{
SQﬁ Premultiplying by M,, we have:
\
Q8

L)
§ . MoMiMau; = Ay M; 3y (A.10)
8
s Thus Ay is also the eigenvalue of MMy and the corresponding eigenvector is:
LS '
» ¥1 = ¥pzy (A.11)
iﬁ' Premultiplying (A.10) again by M,

y MyMoMyvy = MMyvy (A.12)
ha and comparing (A.10) with (A.12)
"%3 3y = My (A.13)
3

Thus we can find the eigenvalues and eigenvectors of R by working with the

|

o
‘l

-

FARAE

matrix M2u1 which is of order 2. Hence:
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(A.14)
(A.15)
The eigenvalues Ay and Ay are found to be:
xy = 1/2{L}ag|? + L]ag|? + 2Relxg} + ((L}ay|? + Liay|*+ (A.16)
1 1 2 g 1 2 .

2Re{xg])2—4(L2 - |8|2(|‘1|2|‘2|2-|x|2

Ay = 1/2(L]ag |2 + L]ay|? + 2Relxg} - ((L|ay]? + L]ay|? + 2Re{xg}?) -
402 - [g) (ag sy |? - Jz*1/2
where
* N N-L LAw
{a a, } cos(—— —2)Aw ° sin Aw sin
Re{xg) = Re ——2 2 2 2 (A.17)

2(N-L) sinz.ég—

Note that a column of the adjoint of (M;Mj-A;I) gives the eigenvector v, of

My ¥, .
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.y

s a_1

oD = |@la P -z -2, e, )% - L

—Iallzg-Lx (L|a2|2 + x‘g‘)-x1 (438

Therefore the eigenvector vy is : ¥v1 = [vqq v21]T
or vq = [(Llal|2 + xg)=Ay -lallzg—Lx]T (A.19)
Now the eigenvector 8y of R corresponding to Ay is:

3 = My
and hence,

mp = vig (agl? eg + xe9) + vp(lag|? g + 2" gy). (4.20)
a linear combination of the Fourier vectors e; and e5.
Similarly, the eigenvector uy of R corresponding to Ay is:

up = via g [Peg + xe0) + vpp' oy [Peptaey) (4.21)
where vy' = [vqq' v21']T
and

vi1' = (L|a2|2 + x‘g‘)—kz (A.22)

va1' = ~|ag)? & - L

The rest of the eigenvalues of R are zero and the corresponding eigenvectors

are not unique.
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TABLE I
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ESTRTTRR y  CATATY
AR L IR AL W L T

r SNR SVD P-L PM W
mean= 22,0357 22,0126 22.0174
) st.dev= 0 0 0
22.065g—’- 22.0423 i 22,0353 o
% 0.2652 0.2655 0.2642
) 22.0341 2.2 | 2221
- 1.4927 1.4936 1.4892
28.8;61 ] 28,5285 T ;é:;;25 i
’ 8.6489 8.7576 8.74717
Eigenvalue estimate 1y
1,7107 0.5741 1,7131
®
0 0 | 0
- =
1.7162 0.7504 1.7199
% 0.0497 0.3777 0.0498
"""""" T 1sess | 1.0327 O nsem
+ 0.2856 0.5357 0.2884
"""" T 10.s3m9 T Leer | assss
’ 2.7981 1.2625 2.6301
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;‘.;é SNR SVD, P-L SVD, PM
U e e o S
:gs mean = 0 0.4770 -4
!'g?‘ ®

* st.dev = 0 0
by : 0.6980 -5 0.5819 -4
;. v 30
M 0.1938 -4 0.757S -4
D ™y - ————— e e e e e U
AT\,
R 0.2775 -4 0.1991 -3

15
;ip 0.5746 -4 0.1606 -3
K e e e e e - — e ——— e e e e s
o
Sy 0.5305 -2 0.5932 -2
ol 0

A 0.1019 -1 0.1035 -1
Y
Ha First Eigenvector Distances
. t}
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b
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o 0.4618 -2 0.2055 -2
ved 15
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: -
S SNR SVD FFT P-L PM

T [S—— e - ——— . e e
o) ® 0.30472 +5 0.14050 +4 0.15835 +4 0.27610 +4
& 30 0.24391 +5 0.14119 +4 0.15859 +4 0.27793 +4

‘ _______ e e m e e ——————-— e et s ——— [ et b v ————— . L - i e, ————————
:&: - 15 0.24538 +5 0.14065 +4 0.15877 +4 0.27506 +4

(] M —_— —— e ————— e e it et e m—————— ] e ———————— e e e ————————
:! 0 0.25819 +5 0.14029 +4 0.15874 +4 0.27568 +4
i

;' Computational Cost

¢ ( measured in time units t ,where 1 t,= 26.04166 pusec )
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2

SVD P-L PM

P T

N

e mean= 0,5000 0.5000 0.5000
3l‘ ) ®
?,; st.dev= 0 0 0

——— e . - . -~ e e e ———————— ] e o - i ——————— - - e - e e § b ¢ e e ———

T 0.4999 0.4999

0,0013 0.0013 0.0013

B\ -
. 0.4961

0.4962

0.4952

A 0.0157 0.0137 0.0154

s e - U, - U _-——

0.4331 0.4620

0.4551

\/
,'{? 0.1334 0.0898 0.1082

. Frequency Estimate f4

0.5200 0.5200

0 0 0

o 0.5201 0.5201
3 30

0.0013

15

0.5251

0.0190

0.0013

0.5249

0.0141

0.5717

0.1184

0.5613

0.0893

Frequency Estimate f,

TABLE Iv

0,0013

0.5251
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0.5642

0,0980




D
&
'i
b}
)
-
KN
i References
e ) 1. W.S. Liggett, "Passive Sonar: Fitting Models to Multiple Time Series,”
% ‘ Signal Processing, Ed. J.W.R. Griffiths et al, Academic Press 1973.
?{? 2. N.L. Owsley, "A Recent Trend in Adaptive Spatial Processing for Semsor
N Arrays: Constrained Adaptation.” Signal Processing, Ed. J.W.R,
Griffiths, et al, Academic Press 1973.
A
fﬂ 3. D.¥. Tufts, R. Kumaresan, I. Kirsteins, "Data Adaptive Signal
§ Estimation by Singular Value Decomposition of a Data Matrix,” Proc. of
y;ﬁ IEEE, Vol. 70, No. 6, June 1982,
“ 10
4. A. Cantoni and L. Godara, "Resolving the Directions of Sources in a

‘i§$ Correlated Signal Field Incident on an Array,” Journ. of Acoust. Soc.
‘f3§ Amer., 67(4), April 1980, pp. 1247-1255,
¢
52% 5. 6. Bienvenu and L. Kopp, “"Adaptive Higk Resolution Spatial
‘:iﬁ Discrimination of Passive Sources,” Underwater Acoustics and Signal
‘ Processing, Ed. L. Bjorno, D. Reidel, 1981,
S
ﬁt[ 6. N.L. Owsley, "Modal Decomposition of Data Adaptive Spectral Estimates,”
SRS Proc. Yale Univ. Workshop on Applications of Adaptive Systems Theory,
o New Haven, CT, May 1981,
b

ﬁ ' 7. D.W, Tufts, R. Kumaresan, "Estimation of Frequencies of Multiple
N Sinusoids: Making Linear Prediction Perform Like Maximum Likelihood,"
A - Proc. of the IEEE, Vol. 70, No. 9, September 1982, pp. 975-989.
.‘A¢‘
&!I‘ 8. K. Pearson, “On Lines and Planes of Closest Fit to Systems of Points in
& Space, Phil, Mag., 2 (sixth series), 1901, pp. 559-572,

R. Frisch, "Correlation and Scatter in Sta:istical Variables,” Nordic

-
-

e ,

o Stat. J., 8, pp. 36-102, 1929,

i

R

5:. 10. C. Radhakrishna Rao, "The Use and Interpretation of Principal Component
R Y Analysis in Applied Research,” Technical Report No. 9, Sankhya, 1965.

1
-
2

11. VW.K. Pratt, Digital Image Processing , A. Viley-Interscience
Publication, New York, 1978.

A

12. R. deProny, "Essai Experimentale et Analytique,” J. Ecole Polytechnique
(Paris), pp. 24-76, 1795,

E LT
LAAA

13. F.B, Hildebrand, Introduction to Numerical Analysis, pp. 378-382,
McGraw-Eill Book Company, New York, 1956.

S,
-

-
[

| <At
|

14, C. Lanczos, Applied Analysis, Prentice-Ball, Inc., 1956.

15. D.¥. Tufts and R. Kumaresan, "Improved Spectral Resolution II,” Proc.
ICASSP 80, pp. 592-597, April 1980.

L et |

E I~

16. Ramdas Kumaresan and D.W. Tufts, "Accurate Parameter Estimation of
Noisy Speech-Like Signals,” Proceedings of the 1982 IEEE International

27

N N T BRI 5 S, Fin W KNI P
PR ERIIN DO S RO R it S



o

Wy

‘t'g;‘ 4.

“5 Conference on Acoustics, Speech, and Signal Processing (ICASSP 82), pp.
Al 1357-1361,

BRG]

i 17. Ramdas ZXumaresan and D.W. Tufts, “Estimating tke Parameters of
§ ﬁ Exponentially Damped Sinusoids and Pole-Zero Modeling in Noise,” IEEE
{}f Trans. Acoust. Speech, Signal Processing, Vol. ASSP-30, No. 6, December
"§ 1982, pp. 833-840.

18. T.L. Henderson, "Geometric Methods for Determining System Poles from
Transient Response,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, Vol. ASSP-29, pp. 982-988, October, 1981,

19. S.S., Reddi, "Multiple Source Location - A Digital Approach,” IEEE
Trans. on Aero. and Elec. Syst., Vol. AES-15, No. 1, pp. 95-10C5.

-

z“.--»«;
LA

-

‘ 20. G. Bienvenu and L. EKopp, "Adaptivity to background Noise Spatial
’f Coherence for High Resolution Passive Methods,” Proc. of ICASSP 1980,

;\ April 1980, pp. 307-310,
A
éﬁ“ 21, R. Schmidt, “"Multiple Emitter Location and Signal Parameter
- Estimation,” Proc. RADC Spectal Estimation Workshop, pp. 243-258, Rome,
g NY, 1979.
f‘
fﬁ& 22. A.H. Nuttall, "Spectral Analysis of a Univariate Process with Bad Data
o Points via Maximum Entropy and Linear Predictive Techmniques,” in NUSC
Scientific and Engineering Studies, Spectral Estimation, NUSC, New

e London, CT, March, 1976,
‘.l
; I 23. T.J. Ulrych and R.¥W, Clayton, “Time Series Modelling and Maximum
Wy Entropy,” Physics of the Earth and Planetary Interiors, Vol. 12, pp.
e 188-200, August, 1976.

« ke
. 24, S.¥, Lang and J.H. McClellan, "Frequency Esitmation with Maximum
08¢ Entropy Spectral Estimators,” IEEE Trans. on ASSP, Vol, 28, No. 6, Dec.
O 1980, pp. 716-724.
)
WY .
q : 25. R.R. Hocking and L.,L. Leslie, "Selection of the Best Subset in
Ak Regression Analysis,” Technometrics, Vol. 9, pp. 537-540, 1967.
i;:" 26. K. Nakayama, "Permuted Difference Coefficient Digital Filters,” 1981
wes IEEE, ICASSP, Atlanta, GA.
-§
;5 27. K. Nakayama, “Permuted Difference Coefficient Realization of FIR

{ Digital Filters,” IEEE TRans. ASSP, Vol. ASSP-30, No. 2, April 1982,
X \ 28. G.F., Boudreaux, T.W. Parks, "Discrete Fourier Transform using Summation
:;: by Parts,” submitted to IEEE Trans. ASSP.

"
:w: 29. R. Kumaresan, D.W. Tufts, L.L. Scharf, "A Prony Method for Noisy Data:
e Choosing the Signal Components and Selecting the Order in Exponential

Signal Models,” Report No. 3, December 1982, Dept. of Electrical
Engineering, University of Rhode Island, prepared for the Office of
Naval Research,

IS

VAN AP Rt AT AT AT R T o X
TR ARG SH ALY,



X3
e I
?; ‘-",'

i

30,

31,

32.

33.

34,

35.

36.

37.

38.

39.

40,

41,

420

43,

Claasen, T.A.C.M., and Mecklenbrauker, W.F.G., "The Wigner Distribution
- A Tool for Time-Frequency Signal Analysis - Part II: Discrete Time
Signals,” Philips J. Researck, v. 35, no. 4/5, pp. 276-300, 1980,

G.F. Boudreauxz—Bartels, ®"Time-Frequency Signal Processing Algorithms:
Analysis and Synthesis using Wigner Distributions,” Ph.D. Dissertation,
Rice University, Houston, TX, December, 1983,

R. Kumaresan and D.W. Tufts, "Improved Spectral Resolution III,” Proc.
of IEEE, vol. 68, No. 10, October 1980, pp. 1354-1355.

D.¥W. Tufts, I. Kirsteins, R. Kumaresan, "Data Adaptive Detection of a
Weak Signal,” Trans. on Aerospace and Electronic Systems, Vol. AES-19,
No. 2, March 1983,

C. Eckart, G. Young, "The Approximation of one Matrix by Another of
Lower Rank,” Psychometrika, Vol. 1, pp. 211-218, 1936.

D.W., Tufts, F. Gianella, I. Kirsteins, L.L. Scharf, "Cramer Rao Brunds
on the Accuracy of Autoregressive Parameter Estimators,” to be
submitted to Trans. ASSP.

S. Kay, S. Marple, "Spectrum Analysis — A Modern Perspective,” Proc.
IEEE, Vol. 69, No. 11, November 1981,

G.Golub, C. Van Loan,Matrix Computations,John Hopkins Univ.Press,1984.

D.W.Tufts, C.D.Melissinos, "Simple,Effective Computation of Principal
Eigenvectors and their Eigenvalues and Application to High-Resolution
Estimation of Frequencies ",Proc. ICASSP ,Tampa,Florida,1985.

B.N.Parlett, _The Symmetric Eigenvalue Problem ,Prentice-Hall,1980.

J.Y.Dongara, C.B.Moler, J.R.Bunch, G.W,Stewart, LINPACK User's Guide,
Siam, Philadelphia,b 1979,

C.Davis, W.M.Kahan, "The Rotation of Eigenvectors by a Perturbation.
III* ,Siam J. Numer. Anal.,Vol. 7,No. 1,March 1970,

R.N. Bracewell, "The Fast Bartley Transform,” Proc. IEEE, vol. 72, No.
8, August 1984,

R. Kumaresan, P.K. Gupta, "A Real-Arithmetic Prime Factor Fourier
Transform Algorithm and Its Implementation,” submitted to Trans, ASSP,




OFFICE OF NAVAL RESEARCH
STATISTICS AND PROBABILITY PROGRAM

- BASIC DISTgIBUTION LIST
10 FOR
A UNCLASSIFIED TECHNICAL REPORTS
L)
‘e FEBRUARY 1982
3 |
é; Copies Copies
g§ Statistics and Probability Navy Library
. Program (Code 411(SP)) National Space Technology Laboratory
\ Office of Naval Research Attn: Navy Librarian
-’i Arlington, VA 22217 3 Bay St. Louis, MS 39522 1
Defense Technical Information U. S. Army Research Office
N Center P.0. Box 12211
,P} Cameron Station Attn: Dr. J. Chandra
‘ol Alexandria, VA 22314 12 Research Triangle Park, NC
. 27706 1
i Commanding Officer
Office of Naval Research Director
Eastern/Central Regional Office National Security Agency
' Attn: Director for Science Attn: RS51, ODr. Maar
as Barnes Building ' Fort Meade, MD 20755 1
495 Summer Street
Boston, MA 02210 1 ATAA-SL, Library
! U.S. Army TRADOC Systems
b Commanding Officer Analysis Activity
. Office of Naval Research Department of the Army
o Western Regional Office White Sands Missile Range, NM
- Attn: Dr. Richard Lau 88002 i
1030 East Green Street i
- Pasadena, CA 91101 ] ARI Field Unit-USAREUR
o Attn: Library
' U. S. ONR Liajson Office - Far East c/o ODCSPER
. Attn: Scientific Director HQ USAEREUR & 7th Army
T APO San Francisco 96503 1 APO New York 09403 1
. Applied Mathematics Laboratory Library, Code 1424
,Ij David Taylor Naval Ship Research Naval Postgraduate School
- and Development Center Monterey, CA 93940 ]
- Attn: Mr. G. H. Gleissner
X Bethesda, Maryland 20084 1 Technical Information Division
il Naval Research Laboratory
Y Commandant of the Marine Coprs Washington, DC 20375 1
:;5. (Code AX)
N Attn: Dr. A. L. Slafkosky 0ASD (I&L), Pentagon
Scientific Advisor Attn: Mr. Charles S. Smith

Aashington, OC 20380 1 washington, OC 20301 1

-
r




g

.
a_ L

h
DL Y
b
3
b
)
)
3

¥

3
hY
X

»

Copies

Director

AMSAA

Attn: DRXSY-MP, H. Cohen

Aberdeen Proving Ground, M0 1
21005

Dr. Gerhard Heiche
Naval Air Systems Command

Copies

Reliability Analysis Center (RAC)
RADC/RBRAC
Attn: I. L. Krulac
Data Coordinator/
Government Programs
Griffiss AFB, New York 1344]

—d

Technical Library

(NAIR 03) Naval Ordnance Station
Jefferson Plaza No. 1 Indian Head, MD 20640 )
Arlington, VA 20360 1
Library
BN Dr. Barbara Bailar Naval Ocean Systems Center
o Associate Director, Statistical San Diego, CA 92152 ]
N
W Standards
e Bureau of Census Technical Library
A?“ Wasnington, DC 20233 1 Bureau of Naval Personnel
Department of the Navy
T Leon Slavin Washington, DC 20370 1
f‘d Naval Sea Systems Command
s (NSEA OSH Mr. Dan Leonard
1o Crystal Mall #4, Rm. 129 Code 8105
ey Washington, DC 20036 ] Naval Ocean Systems Center
San Diego, CA 92152 1
ol © B. E. Clark
i RR #2, Box 647-B Or. Alan F. Petty
S Graham, NC 27253 ] Code 7930
Sy Naval Research Laboratory
Al Naval Underwater Systems Center Washington, DC 20375 1
. Attn: Dr. Derrill J. Bordelon
i% ) Code 601 Dr. M. J. Fischer
A Newport, Rhode Island 02840 1 Defense Communications Agency
P Defense Communications Engineering
;ij Naval Coastal Systems Center Center
] Code 741 - 1360 Wiehle Avenue
. Attn: Mr. C. M. Bennett Reston, VA 22050 ]
‘i Panama City, FL 32401 1
184 Mr. Jim Gates
¥, Naval Electronic Systems Command Code 9211
(NELEX 612) Fleet Material Support Office
e Attn: John Schuster U. S. Navy Supply Center
. National Center No. 1 Mechanicsburg, PA 17055 1
T Arlington, VA 20360 1
- Mr. Ted Tupper
ARy Defense Logistics Studies Code M-311C
. Information Exchange Mﬂ’ltary Sealift Command
2 Army Logistics Management Center Department of the Navy
- Attn: Mr. J. Dowling Washington, O0C 20390 ]
,:: Fort Lee, VA 23801 ]
B
e
* (]
"
ﬁs'
R 10 £ R R A A T K T A v T e S D e




¥y

\ I8

-V

_ " »
[T iz g
o e .

S
ity te!

i

eSS L)
PR
1

Copies

Mr. F. R. Del Priori

Code 224

Operational Test and Evaluation
Force (OPTEVFOR)

Norfolk, VA 23511 1

- " p Tt - L RN P I T R D It TN P Tt
SR !.\?ﬁ.,?»-,‘hi?w\,. A O A TARA LR IR

O 3 AT A A

[

LA

FaREAA S -
IO

Copies

- A D -
R X 2N PO NN SN sy A




-
-

ot vy

?‘!

¥
*

B

v"’o

o
. u'r
-

AN "\_

YA

EL)

.

7

-

F

-
-

LT

L;‘

. i
F N a8
v

o
»r
»

AL

AN AN



